AD-A015 846

A COMPLETE UNIFICATION ALGORITHM FOR ASSOCIATIVE-
COMMUTATIVE FUNCTIONS

Mark E. Stickel

Carnegie-Mellon University

f Prepared for:

National Science Foundation
Advanced Research Projects Agency
Air Fcrce O0ffice of Scientific Research

June 1975

DiSTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

T

AIR FORCE OFF
ROUD

Th i

2 =

Repr

NATIONAL TECHNICAL
INFORMATION SERVICE

US Deps
VA

Springfisld

EN RESE

T hand &

IGE OF 30

3
5
e i

KRCH (AFSh)

s
e

Is

Sl i

T R —

DRSS 2t S TR

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE e
W . GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUWLER
AR =TR- 75 1205 |

M. E. Stickel 4 F44620-73-C-0074

(3 PERFORMING ORGANIZATION NAME AND ADDRESS

Clrnegie-Mellon Univerlity AREA & WORK UNIT NUMBERS

4. TITLE (and Subtitle) A COMPLETE UNIFIC‘&TION S. YV’!-O' REPORT & PERIOD COVERED
ALGCRITHM FOR ASSOCIATIVE-
% Interim
COMMU TAT! VE FUNCTIONS' 6. PERFORMING ORG. REPORT NUMBER
gmﬁl(o) 8. CONTRACT OR GRANT NUMBER(s) |

0. PROGRAM ELEMENT, PROJECT, TASK

Computer Science Dept 61101D
Pittsburgh, PA 15213 A0-2466
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency June 1975
1400 Wilson Blvd 13. NUMBER OF PAG

Arlington, Va 22209 - p .S 2
. MONITORING AGENCY NAME & ADDRESS(if ditferent from Control'ing Oftice) 1S. SECURITY CLASS. (of this report)

Air Force Office of Scientific Research/NM
1400 Wilson Blvd UNCLASSIFIED

Arlington, Va 22209 'ﬁrgé&.&ﬁkncunomoowncnomc

16. DISTRIB!IITION STATEMENT (of this Reort)

A!\!\rnvpd far mihlic release: distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered in Block 20, 1f different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORODS (Continue on reverse side if necessary and identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)
An important component of mechanical theorem proving systems are unifi-

cation algorithms which find most general substitutions which, when applied
to two expressions, make them equivalent. Functions which are associative
and commutative (such as the arithmetic addition and multiplication functions)
are often the subject of mechanical theorem proving. An algorithm which
unifies terms whose function is associative and commutative is presented.

(continued)

DD ,’an'7s 1473 =zoimion oF 1 nov 65 1s oBsoLETE * UNCLASSIFIED

* SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered’

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) R
-

Block . 0/Abstract

The algorithm eliminates the need for axiomatizing the associativity

and commutativity properties and returns a complete set of unifiers
without recourse to the indefinite generation of variants and instances

of the terms being unified required by previous solutions to the problem.

Py T

10

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

A COMPLETE UNIFICATION ALGORITHM FOR

ASSOCIATIVE-COMMUTATIVE FUNCTIONS | 12
by

Mark E. Stickel
Department cf Computer Science
Carnegie-Melion University

Pittsburgh, Pennsylvania

Abstract

An important component of mechanical theorem proving systems are unification algorithms
which find most general substitutions which, when applied to two expresssions, make them
equivalent. Functions which are associative and commutative (such as the arithmetic adc:‘ion
and multiplication functions) ere often the subject of mechanical theorem provirg. An
algorithm which unifies terms whose function is associative and commutative is presented here.
The algorithm eliminates the need for axiomatizing the associativity and commutativity
properties and returns a complete set of unifiers without recourse to the indefinite generation
of variants and instances of the terms peing unified required by previous solutions 1o the

probiem,

lRmur«:h supported by the National Science Foundation (GJ-28457X2) and by the Advanced
Research Projects Agency of the Secrelary of the Office of Defense (FA4620-73-C-0074).

270 be presented at the Fourth International Joint Conference on Artificial Intelligence (Tbilisi,

b

Georgia, USSR Sept. 1975).

lotroduction

At the core of many theorem proving systems is a unification algorithm which returns
for a pair i input expressions a sel of unifying substitutions, assignments fo the variables of
the expressions which make the two expressions equivalent Typical is the unification
algorithm of Robinson [6] for unifying atomic formulas of the first order predicate calculus in
resolution theorem proving [1].

This work treats the case of unifying terms of the first order predicate calculus where
the funclion is associative and commutative. Such functions are mathematically important and
thus of interest to developers of theorem proving programs. Examples of such functions ai-a
the arithmetic addition and multiplication functions.

The case where the function is simply commutative ig easily handled by a frivial
extension lo Robinson's unification algorithm which unifies the argumer:its of one term against
permutations of the arguments of the other term.

The case where the function is simply associative is quite difficult and we know of no
general solution. Suggestive of the difficulty of this problem is the fact that there may be an
infinite number of unifiers for a pair of terms. For example, the terms f(xa) and f(ax) where f
is associalive, a is a constant, and x is a variable has unifiers with x=a, x=f(aa), xef(aaa), ...
(We represent the argument listc of associative funclions with no exira parentheses, i.e.,
t(abc) rather than f(at(bc)) or f{f(ab)c).)

Two principal approaches to handling associalivily or commutativity are available. The
first, standard approach is to reprasent the terms conventionally, i.e., f(af(bc)) or f(f(ab)c)
rather than f(abc), and axiomalize the associativity or commutativity property. The
associalivily axiom would be fxtyz))=f(f(xy)z) and the commutativity axicm would be
Hxy)=4{yx). These axioms could be applied using some equality inference rules such as
paramodulation [5].

The second approach represents associalive funclions as functions with an arbitrary

number of arguments, i.e, uses f(abc) rather than f(af(bc)) or f(f(ab)c). Special purpose
unification algorithms are provided for terms whose functions are associstive, commulative, or
both. Zxamples of this approach in first order predicate caiculus theorem proving are the
work of Nevins (2] and Slagle [8]. The algoriiims for associativily, and for associativity and
commulativity are incomplete, i.e, they feil to return all the unifiers in some cases. An
example of this approach in the area of programming languages for problem solving is the use
of the associative data type tuple or vector and associative and commutative data type bag in
the QA4 and QLISP languages (7,4]). Again, in this case the algorithms for »attern matching
{unifying) these expressions are incomplete. In both these cases, the incomplete algorithms
can be augmented by a process which allers the input expressions to cause the unification
algorithm applied to the allered expressions to return additional unifiers. The addition of this
process (Slagle's widening operation for the first order predicate calculus [8) and Stickel's
variable splitting operation for expressions of QA4 and QLISP [9)) results in completenass.
Widening and variable splitting are both operations that must be performed on one or hoth
inpul expressions an arbitrary number of times, replacing single variables of the expressions
uniformly by two variables; it is essentially (repeated) paramodulstion by the functionally
reflexive axiom.

An example of the latter approach is the unification of f(abz) and fixy) whers f is
associative and commutative. The special purpose unification algc-ithm would return the
unifiers {x+~a, y~f(bz)}, {x«b, y«~f(az)}, {xrz, y~f(ab)}, {x=f(bz), y~a}, {x~f(az), y~b}, and
{x+f(ab), yrz}. But this is an inccmplete set of unifiers since the possibility that the value of
z is nol wholly contained in either the value of x or the value of y is not represented. After
performing a widening operalion on f(abz) resulling in f(abzlzz) by instanliating z by f(z)25),
additional new unifiers such as {x‘-f(azl), y+t(bzy), zo-f(zlzz)} and {x~f(abz)), y*zp,
z+f(z}25)} are returned by the unification algorithm.

Related to this approach, though different in detail, is Plotkin's work on the th..ory of

e M e

building in equational theories [3] of which associativity and commutativity are examples. In
the case c! associalivily, Plotkin retains terms in a normal form: right associative form,
although it could equivalently have been our unparenthesized form. His equivalent of the
widening rule, the replacement of a variable by two new varisbles, is applied coniinually
inside the unification algorithm rather than being used outside it. Thus his unification algorithm
may generate an infinite number of unifiers as opposed to a unification algorithm guaranteed
to produce a finite number of unifiers and a potentiaiiy infinite process (widening) for altering
inputs fo the unification algorithm to oblain additional unifiers. The differency i approaches
seems fo be principally one of organization of the search process.

In this paper, we present 2 new special purpose unification algorithm which we call the
AC unification algorithm for terms whose functions are associative and cummutative which
returns & complele set of unifiers. This algorithm eliminates the need for axiomatizing
associativity and commutativity and also eliminates the cost of continually applying these
axioms which often results in much unnecessary or redundant computation. It also eliminates
ine need for using the process of widening or variable spliling whose necessily (for
discovering a complele set of unifiers in the case of unifying any particular pair of

expressions) is difficult to ascertain.

Ierminology
Refinition. A term is defined to be
(1) a constant,
(2) a variable, or
(3) a function symbol succeeded by a list of \erms (the irguments of the function).
We shall use the symbols a, b, and ¢ lo represent conslanis, x, y, and z (possibly
indexed) 10 represent variables, and f to represent a function whict is associative and

commutativae.

Definition. A substitution componunt is an ordered pair of a variable v and a term t

written as v+t. A substitulion component denotes the assignment of the term to the variable

or the replacement of the variable by the term.

Refinition. A substitulion is a set of substitution components with distinct first elements,

1.0, distinct variables being substituted for. Applying a substitution to an expression results in

the replacement of those variables of the expression included among the first elements of the

substitution components Ly the corresponding terms. The substitution components are applied

to the expression in parallel and no variable occurrence in the second element of a

substitition component will be replaced even i the variable occurs as the first element in

another substitution component. Substitutons will be represented by the symbols ¢ and 8.

The application of substitution # to expression .\ is denoted by A#. The composition of

substitutions #o denotes the substitution whose effect is the same as first applying substitution

¢, then applying substitution ¢, i.e., A(#¢) = (Af)e for every expression A.

Rafinition. A unifying substitution or unifier 2f two expressions is a substitution which
when applied to the two expressions results in equivalent axpressions. In ordinary unification,
two expressions are equivalent if and only if they are identical. In unification of argument lists
of commutative functions, two expressions are equivilent if they have the same function
symbo. and the same arguments in the same or different order.

Defirition. Term s is an instanca of terin t, and t is a generalization of s, if there exists
a substitution # such that te=s.

Similarly, substitution # is an instance (generalization) of substitution ¢ if, for every

term t, {8 is an instance (generalization) of te.

The AC Unitication Aleorit

We present here an algorithm for unifying two terms whose function is associative and !

e] — = g =

commutative. Terms will be represented as if the function had an arbitrary number of
arguments with no superfluous parentheses.

We will assume that the argument lists of the two terms being unified have no common
arguments. This presents no difficulty since no unifiers are lost and efficiency is gained if
common arguments are eliminated immediately. This is done by removing common arguments
a pair at a time, one from each of the argument lists. For example, before unifying {(xxyabc)
and f(bbbez), the b's common to the two terms are removed yielding f(xxyac) and f(bbcz), and
the ¢'s common to the two new terms are removed yielding f(xxya) and f(bbz). An example of
the utility of immediately removing common arguments is the unification of f(g(x)y) and
f(g(x)g(a)). 1f the g(x)'s common o the two terms are immediately removed, the unification
algorithm will return the most general unifier {y~g(a)}. If the common g(x)'s are retained,
unificalion will likely result in the generation of the additional less general unifier
{x-a,y-gla)}.

The algorithm will be expressed partially in terms of an algorithm for the complete
unification of terms with an associative and commutative function with only variables as
arguments. The result of unifying such terms is an assignment to each variable of the terms
some sequence of terms. Each variable is assigned a term t, (vhose function symbol is not f)
or a term f(t;"1..1 "m) (with n, occurrences of term t, as arguments of f). For such an
assignment fo be a unifier, the only requirement is that for each term t; used in any
assignment there are the same number of occurrences of that term occurring as arguments of
f in each of the unified terms instantisled by the assignmenl. For example, in unifying
flxyxyxoxg) » d fly y|y2) if terin t is part of some assignment o one of the variables, then
2 times the number of occurrences of 1 in the assignment for x; plus the number of
occurrences of t in the assignment for xo plus the number of occurrences of t in the
assignment for x3 must equal 2 times the number of occurrences of t in the assignment for y,

plus the number of occurrences of t in the assignment for y,. For example, {x;+f(bb),

L {
R T T T T SR R - P U I, - L T Ry I N N N o T R e B Ty .

xzo-f(ab), x3*a, y*b, yz*f(aabbb)} is a unifier of f(x|x|x2x3) and f(ylylyz) since there are
2 a's and 5 b's in the instantiations of f(x;x xox3) and fly yy2) with the unitied term being
f(aabbbbb).

With each pair of terms with an associative and commutative function with only variable
arguments is associated a single equation representing the number and multiplicity of variables
in @ach term. For example, the equation 2x sxpex3 = 2y *y, is associated with the pair of
terms given above. This equation succintly represents the cindition for a substitution to be a
unifier: that the sum of the number of occurrences of sny t irm in the value of each variable
multiplied by the muitiplicily of the variable in the term must be equal for the two terms.

Non-negative integral solutions to such equations can be used to represent unifiers.
The solutions must be non-negative integral since each variable must be assigned a
non-negative integral number of occurrences of each term.

in order to generate all the solutions 1o the problem of unifying the two terms, it is
necessary o be able to represent all the solutions to the equation derived from the terms.
Every non-negative integral solution to the equation is representable as a sum of elements of
a particular finite sel of non-negative integral solutions to the equation, i.e, every
non-negative integral solution 1o the equation is a sum (equivalently, a sum with non-negative
integral weighls) of elements of a particular finite sst of non-negative integral solutions. The
finite set of non-negative integral solutions by whose addition the entirs non-negative integral
solution space is spanned is generable by generating in ascending order of value solutions to
the equation, eliminating those solutions composable from those previously generated. This
process can be made finite by placing a bound on the maximum solution value which will be

used; such a maximum is proved in a later iemma 1o eliminate no needed solutiorns.

Consider the equation 2x)*xp*x3 = 2y +y,. Solutions to the equation are:

Xy &X|:XpeX3 2Y|%Yp

N
w

NOUEDWN —
- E-X-E-K-1J
OCOMN~O— Ox
OO0 ~nNO —x
— O~ ——0O0OK
oNvNOO O — —
N NN NN = o—
N NN NN = —
o

Associated with each solution above is a new variable (in the rightmost column). The

assignment of as many occurrences of that variable as specified in the solution to each of the

“variables of the original ferm results in a partial solution to the unification of the the original

terms. In particular, the assignment of 2 occurrences of variable 23 to x3 and 1 occurrence to
y| results in an equal number of occurrences of variable z3 in each of f(xyxyx2x3) and
Hyy2).

Every non-negalive integral solution to the equation is a (non-negative integer
weighted) sum of the 7 solutions presented sbove, i.e, every solution is representable as
X|*2g*27, Xp=224244215, X932 4223424, ¥|"23°24%25°27, ypt2)+2p+22¢g for some
non-negative integral values of zj,.,2g. However, not every solution to the equation is a
solution to the unification problem for which the equation was derived. There is an additional
constraint that each variable of the original terms must be have at leas! one term in its value;
it cannot have zero terms in its value.

Hence, we must form that subset of the 272128 sums for which each element of the
5-tuple is non-zero. (It is not necessary to consider sums in which any solution has a
coefficient other than O or 1 since such solutions (in the unification problem) are already
representable since the solution's inclusion with coefficient 1 introduces a variable which can
have as its value an arbitrary number of terms as arguments of f thus simulating the case of
the coefficient being greater than 1) There are 69 such sums including for example

(representing the sum by the set of its indices) {2,3,6}, {1,2,3,6}, and {4,6] with associated

unifiers

{r1 26, X222, x3+-1(2323), y | ~23, y2+H(zp2526)),
{x 26, x2%2,, x3+i(z 2525}, Yi*+23, yz*l(zlzzzszs)}. and
(x| ~2g, Xa%24, X324, Y| 24, Yo+ 1(2626)).

Note that if a variable could have as its value zero terms rather than one or more
terms as in the first order predicate calculus, it would be unnecessery to form this subset of '
2" (where n is the number of solutions) sums. Only the sum of all the solutions would he
required since any variable present in this sum could have value zero, and the variables in the
corresponding unifier could be maiched against zero terms. This is the situation with fragment
variables in the bag Zeta type in QA4 and QLISP [7,4] (see [9]).

To be more pre:ise in the definition of the aigcrithm, the algor...m consists of the
following steps:

I. Form an equation from the two terms where the coefficient of each variable in the equation
is equal to the multiplicity of the corresponding variable in the term.

2. Generate all non-negative integral solutions to the equation eliminating all those solutions
composable from other solutions.

3. Associate with each solution a new v rriable.

4. For each sum of the solutions (no sol ition occurring in the sum more than once) with no
2¢ro components assemble a unifier compo:ed of assignments to the original variables with as
nany of each new variable as specified by thy solution element in the sum associated with the
new variable and the original variable.

Now we present the complete algorithm for unifying general terms with associative and
commutative funclions using the algorithm for the variable only case above. We are here
concerned with terms whose function is associative and commutative with arbitrary arguments,
i.e., arguments that may contain ordinary {(non-associative, non-commutative) functions or { or
other functions which are associative and commutative. We assume the presence of ordinary

unification to deal with those aspects of the unification problem not dealt with explicitly here.

- - " ——
P — NIy

First, when unifying iwo terms, two new terms with only variable arguments are formed
by uniformly replacing distinct argumenis by new variables. These new terms have only
variable arguments and are generalizations of the original iwo tarms. For example, in unifying
f(xxya) and f(bbz), we form generalizations f(x;x;xpx3) and fly;yjy2) with substitution
{x| X, xa*y, x3*2, y|*+b, y2+2} instantiating the new terms fo the original terms.

Next, using the previous algorithm for the variabio only case, we unify the
generalizations of the original terms. This has already been done for the example above
resulling in 69 unifiers as stated previously.

Now we have the generalizations of the two original terms, a substitution o instantiate
them to the original terms, and a complete sef of ther unifiers. Every unifier of the original
ferms i~ a simultaneous instance of the substitulion to- instantiate the generalizalions to the
original ferms and a unifier of the generalizations. So all that is necessary o gel all the
unifiers of the original terms is to unify (for each variable being substituled for) the value in
the substitutior. and the value in the unifiers.

In the example, x3 must have value a and y; must have value b. Thus, any unifier of
f(x)x xox3) and f(y. 7172) which assigns {0 3 or y, a non-variable, i.e,, a term of the form
f(..) may be immediataly excluded from consideration since the unification of it with the
assignment including x3+a and y +b will fail. (This constrainl could be applied during the
generation of sums of solulions o the equation rather than afterwards.) This consiraint
eliminates 63 of the 69 unifiers, leaving sums (1) {4,6}, (2) {2,4,6}, (3) {1,5,6}, (4) {1,2,5,6},
(5) {1,2,7}, and (6) {1,2,6,7} wilh associaled unifiers
(1) {xj*2g, x%24, X324, Y| “24, Y2+ 1(2g26)},

(2) {x;*2g, xo+1(2924), x3%24, y|*24, y2+H(222¢76)},
(3) {xj*2q, xp+tzg25), x3*2|, | *25, yo+ilz|2g2¢)},
(4) {x;*zg, xo+1(292525), x3*2|, | *25, yo+H(z)29262¢)].
(5) {x|*2q, xo*2p, X3*2}, ¥|*27, ya+f(z)23)}, and
(6) {x~t(zg27), xa*29, X3*2}, Y| *27, yo+i(z 252626}
9

Unifying each of these with {x #x, xp*y, x5+, y| b, y2+2}, we obtain
(1) no unifier since z4+a and z4+b are not unifiable,
(2) no unifier since 242 and z4+b are not unifiable,
(3) {x+zg, y+1(bb), z-f(azgzg)} (= {y+f(bb), z+-H(axx)}),
(4) {x-zg, y+1(bbzy), z-f(azpzg2g)} (= {y-f(bbz)), t-flazpxx)}),
(5) {x«b, yrzj, 2+(az3)} (= {x+b, 2+1(ay))}), and
(6) {x+f(bzg), y*z5, z*f(azzzszs)} (= {x+f(bzg), z+f(ayzgzg))).
This is a complete set of unifiers of f(xxya) and f(bbz).

Since x3 and y; of the variable only case currespond 1o a and b respectively, and a and
b are not unifiable, any sum including solution 4 to the equation 2x;+x;*x3 = 2y} +y, can be
excluded from consideration since it would require (as in (1) and (2) above) the unification of
a and b. As with the constraint on variables corresponding to non-variable terms not being
assigned more than one variable (terms of the form f(..)) in the variable only case, this latter
consiraint on solutions can be applied during the generation of unifiers in the variable only
case rathe: than afterwards. Elimination of solution 4 before generalion of the 2" sums, and
elimination of sums which do not meet the first constraint would result in the formation only of
unifiers (3), (4), (5), and (6) of the variable only case, each of which has a corresponding
unifier in the general case.

More precisely, the algorithm consists of the following steps:
1. Form generalizations of the itwo lerms replacing each distinct argument by a new variable.
2. Use the algorithm for the variable only case to generate unifiers for the generalizations of
the two ferms. The variable only case algorithm may be consirained to eliminate the
generation of unifiers assigning more than one term to variables whose value must be a single
term, and the generation of unifiers which will require the later unification of terms which are
obviously not unifiatle.

3. Unify for each variable in the substitution from step | and the unifiers from step 2 the

10

variable values and return the resuliing assignments for variables of the original terms. This

is a complete set of unifiers of the original terms.

We will first establish the validity of eliminating arguments common to the two terms.
This will be done by proving that any unifier of the terms is a unifier of the terms with = pair
of common arguments removed and vice versa.

Theorem. Let 8 voSpplpral, Do terms with s,-d‘- for some i,j. Let # be a unifier of
f(8]..8p,) and f(t)..1,), and let « be a unifir; of f(s)..8jw]Sja -5 and f(tl...tj_ltj,l...tn). Then
(1) @ is a unifier of f(s]..5i<15ja] -Spy) and ml""j-ltjtl""n)' and (2) ¢ is a unifier of f(s]..5p)
and (1) ..t,).

Proof.

1. ”‘im‘l-"‘i-l‘iol-"smm = f(s).5)0 = f(t).4,00 = f(tjﬂ(tl...t‘-_lt‘-,l...tn)l), and silstjl.
Therefore “‘i""i-l‘id""m-' = ml""j-l'jﬂ""n)‘ and # is a unifier of “‘l""i-l‘id""m) and
f(ty "-tj-ltj'l"'tn)-

2. “‘l""i-l‘hl""m)’ = f“l""j-ltrl""n)’ and sivtt‘-v. Therefore
f(s;jof(s «8jaSjo] Spmlo) = f(s) .5 o = ft].tp)e = f(tjd(tl...t‘-_lt‘-,l...in)c) and ¢ is a unifier of
f(sl...sm) and f(tl...tn). QED.

The lemma below establishes that every non-negative integral solution tc an equat'on of
the form x| 08Xy = blyl""’bnyn is composable as a (non-negative integral weighted)
sum of a fixad firite set of non-negative integral solutions. It also vwstablishes a solution value
within which all the non=negative integral solutions in the set may be found.

Lemma. Every non-negative integral solution (xl,...,xm,yl,...,yn) to the equation

3 X s..08 X = blle..anyn with positive integral coefficients 3] 48,0 y.4b, IS an additive

11

e N

linear combination of non-negative integral solutions with vilue ax+...eap x. ('blyl s.sbpyp)
less than or aqual to the maximum of m and n tirus the maximum of the least common
multiples of pairs of numbers one from Ay and 7.1@ from bl""'bn'

Proof. Assume with no loss nf generalily that the least common multiple (lem) of n and
b is the maximum of the least common multiples and that m2n.

Proof by inouction on the value of a solution k.

k=0. The solution with k=0 with x =0, .., x 20, y;=0, .., y,=0 is generable as the
additive linear combination of non-negative infegral solutions with value less than 2r equal to
mxlcm(a;,b;) with zero coefficients.

Assume the lemma is true for every non-negative integral solution with value less than
or equal to k. Prove it is true for k.

Case 1. k < mxlcm(a;,b;). In this case, the solution is included among the non-negative
integral solutions with value less than or equal to mxicm(z;,b)) and the lemma is true.

Case 2. k> mxlem(aj,b)). Since ajx)+..0a,x, = k> mxlcm(a;,b)), and each 2,x,>0, at
least one a,x; must be greater than lem(aj,b;), and x; must be greater than lem(a;,b))/3;.
Similarly, since byy;¢..¢b y, = kK> m¥lem(a|,b;), and each b‘-y,-)O, and n¢m, al least one b,-yj
must be greater than lem(a),b;), and Yj must be greater than Icm(ll,bl)/b‘-. Consider ihe
solution with xiclcm(ui,bj)/ai, yj=lcm(ai,bj)/bj, and all other variables zero. This is just the
solution in lowest terms involving only x; and Y and has value |cm(||-,bj) $lem(aj,by). Since
lem(a),b))/a; 2 lcm(ai,bj)/ai and |cm(a|.b|)/bj] Icm(ai,bj)/bj by the maximality of lem(a,b),
the solution involving only x; and yj can be subftracted from the solution with value k leaving a
non-negative integral solution as resull. But this difference solution has value k-lcm(ai,bj) <k
and is thus composable from solutions with value less than or equal to mxiem(a) b).
Therefore, the soluiion with value k > mxicm(a;,b;) is the sum of some solution involving only
x; and Yj with value less than or equal to lem(aj,b)) and some other set of solutions with

value less than or equal o mxlem(a|,b)) and the lemma is true for this case. QED.

12

The lemma proves an upper bound on solution values that must be examined in the
determination of a compleie se! of non-negative integra' solutions which span the
non-negative integral solution space by addition. We believe that tighter bounds can Le
proved. Although a proof for a tighler bound would be desirable, it should he noted that a
lower proven bound would not reduce the nuiaber of found solutions theoretically necessary,
but only decreases the cost of computing them, and would have no effert on the form or
number of unifie’s returned by the algorithm. This is true since 3ny additional solutions
discovered using a |igher bound than necessary must be composable from solutions bounded
by any proven lower bound and would therefore be recognized as redundant and be omitted.

The maximum of the least common multiples of the coefficients cne from the left side
and one from the right side of the equation is a lowe: bound on solution values which must be
examined, i.e, solutions with at least this value must be examined. This is because one of the
needed solutions not otherwise generable is the solution involving only the variables with
those two coefficients with maximum least common multiple and having value equal to the
maximum least common multiple.

Iheorem. The AC unification algorithm for terms with associative and commutative
function with only variables as arguments always terminates, is sound (returns no substitutions
which are not unifiers), ard is complete (e ery unifier is an instance of a returned unifier).

Proof. The algorithm is ruaranteed to terminate since it performs a finite nuriber of
operations on the finite number of non-negative integral solutions generated from the squation
corresponding to the two terms. The generation of these solutions is finite due to the trial

solution values being bounded.

Tha algorithm is sound since each sol'' un of the derived equation causes the

introduction into each of the instantiated terms of an equal number of new variable
occurrences. Thus, the \wo instantiated terms have the san.e number of occurrences of each

new variable and are therefore unified.

13

Any unifier must assign to each variable a term of the form t, (whose function symbol is
not) or a term f(tl"l...tm"m) {with n, occurrences of term t, us arguments of f). Let k be the
caranality of the set of such terms t; in any solution to the unitication of a pair of terms with
only variables as srguments. The two instantiated «orms must have an equal number of
occurrences of each o1 these k terms as arguments of f. That s,

n%in

LTI RSN S bldll ¢..ob.d, . (1<i<k) where m is the nuraber of distinct variables in the first

term being unified, n is the number of disfinct variables in the second term, a; is the

J
multiplicity of the jth variable in the first term, bi is the multiplicity of the j"‘ variable in the
second term, <j is the number of occurrences of tarm i in variable j in the first term, and dij
is the number of occurrences of term i in variable j in the second term.

Each fuple (c;p0- Cimdi] i) is a solution fo the equation
x| ca X, = blYl° +by,, corresponding to the terms being unified. It can thus (according
to the lemma) be formed as the sum of certain non-negative integral solutions to the equation
weighted by positive integers.

Consider the unifier corresponding fo the sum of all those solutions o the equation
which are required in the formation of any of the tuples (€1 Cimdi] i) We will show
that the hypothesized unifier is an instance of this unifier returned by the algorithm.

Include in the value of the new variable associated with each of these solutions a
number of occurrences of term i equal to the coefficient of the solution in the weighted sum.
This will result in the proper assignment of ¢;j occurrences of term i to each variable j of the
lirst term and dij occurrences of term i to each variable j of the second term.

Do this for each of the k terms in the solution. Let no other or additional terms be
included in the values of the new variables.

This assignment of terms in the solution to new variables associated with equation
solutions generated in the unification process results in the correct number ¢jj or dij of each

lerm being assigned to each variable of the original two terms.

14

L R J e

Thus. any solution to the unification of two terms with only variables as arguments is an
instance of a reilurned unifier and the algorithm iz complete. QED.

Ihaoram The AC unification algorithm for general terms with associative and
commutative function always terminates, is sound, and is zomplete.

Proof. Let s anc | be any two terms being unified Le! s* and t* Le the terms
resulting from replacing each ¢.clinct term by a new variable s* and t* are geneializations
of s and { respectively, 1e, s¥§=s *#=1 for some ¢ of tne form { WX*¢;,...} where each X;
1S a new variable and each c; 1s the term in s or { il replaces in s* or t*

Let {aj} denote the unifiers of s* and t* returned by tac n*icaticn algorithm for terms
with associative and commutative function with only variub.e: as arguments. Each 9 is of the
form { ,x,~d,, .} where each X, 1s @ variable of s* or t* u.d d; is the lerm assigned to it by
the unification zlgorithra According 1o the previous theorem, unification terminates, is sound,
and is complete for this case.

Simultaneous insianceg of § and 9 represent unifiers of 5 and t since s*0=s, t*9=t, and

's*aJ:l*a

)

Jnifying each ¢, viith each d; of a returned unifier v of s* and t* results in (by the
assumption of termination, soundness, and completeness of the recursive call on the unification

slgorithm for terms of iesser complexity) a complete set of unifiers for the originai terms s

and t. QED.

Conclusion
We have presented an algorithm for unifying general terms with associative znd
commutative function. We have proven th:: the algorithm is guaranteed to terminate, is sound,

and is complete.

The advantages of this algorithm as compared to other approaches to uni’ying such

terms are {hat the associzlivity and commulativity properlies need not be axiomatized and that

all the unifie's ¢! a pair of such terms are immediataly returned eliminating the unnecessary

and redundant compulation often occurring in other approachos which generate only some of

the unifiers at each step with n¢ indication of waan all the ¢~ii'ers have been generated.

“d

Bibii |

Chang, C. L. and Lee, R. C. T. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

Nevins, A. J. A human oric “ted logic for automatic theorem provingz. J. ACKM 21, 4 (Oct.
1974), 606-621.

Plotkin, G. D. Building-in equational theories. In Meltze~, B. and Michie, D. (Eds.). Machine
Intelligence 7, Edinburgh University Press, Edinburgh, 1972, pp. 73-90.

Reboh, R. and Sacerdoli, U. & preliminary QLISP manual. Technical Note 81, Arlificial
Intelligence Center, Stanforc Arsearch Institute, Menlo Park, Calif., Aug. 1973.

Robinson, G. and Wos, L. Paramodulation and theorem-proving in first-order theories with
equalily. In Maitzer, B. and Michie, D. (Eds.). Machine Intelligen-c 4, Edinburgh University
Press, Edinburgh, 1969, pp. 135-150.

Robinson, J. A. A machine-oriented logic based on the resolution principle. J. ACM 12, |
(Jan. 1965), 23-4].

Rulifson, J. F,, Derksen, J. A. and Waldinger, R. J. QA4: a procedural calculus for intuitive
reasoniny. Technical Note 73, Arlificial Intelligence Center, Stanford Research Institute,
Menlo Park, Calif., Nov. 1972.

Slagle, J. R. Automated theorem-proving for theories with simplifiers, commutativity, and
associativity. J. /ICM 21, 4 (Oct 1974), 622-642.

Stickel, M. E. Unification algorithms for artificia' intelligence languages. Chapler of
incomplete Ph.D. Dissertation, Depariment of Computer Science, Carnegie-Mellon
University, Pilisburgh, Penn,

16

